Development of a Molten-salt Thermocline Thermal Storage System for Parabolic **Trough Plants** James E. Pacheco Steven K. Showalter William J. Kolb Sandia National Laboratories Forum 2001: Solar Energy: The Power to Choose April 24, 2001

Need for Thermal Storage for Trough Plants

- Enables dispatchability without fossil fuel
- Provides load shifting
- Increases revenue from plants
- Allows higher solar fraction in combined cycle (CC) plants
- Improves economics of solar in CC plants
- Decouples collection from electricity production

How Thermal Storage Can be Integrated into a Solar Plant

Direct

- Heat transfer fluid is the same as the storage media
- Examples: SEGS 1 (mineral oil), Solar Two (molten salt)

Indirect

- Heat transfer fluid is transferred to another media
- Examples: SEGS plant (synthetic oil transfers heat to molten salt in a two tank system).

Estimated Capital Cost
Of a Two-Tank Molten Salt
System: \$31/kWh_t

Long-term Goal: \$10/kWh,

Objective of Thermocline Development Project

- Reduce the capital costs of storage for parabolic trough plants relative to the baseline (indirect two-tank molten-salt system).
- Address the technical risks associated with thermocline storage:
 - Compatibility of filler materials with molten-salt
 - Unproven concept
 - Safety issues of fuel (Therminol) next to oxidizer (nitrate salt)

Description of Thermocline System

A thermocline molten salt system:

- Uses a single tank to storage energy
- Has a thermal gradient that separates the hot from cold fluid.
- Uses a low-cost filler material to displace higher-cost molten nitrate salt.

Development Activity Divided into 3 Areas

- Model thermocline system: Simulate performance and economics
- Evaluate candidate filler materials: Isothermal and thermal cycling tests
- Test a small pilot-scale thermocline: 2.3 MWh capacity to validate performance and operating characteristics

Modeling a Thermocline System

- Transient thermal behavior simulated by the Schumann equations which describe the heat transfer between a fluid and a packed bed.
- Finite difference representation of these equations enabled calculations of the thermal gradient and inlet and outlet temperatures as a function of time.
- Also enabled calculation of extracted energy and capacity.

$$(\rho C_p)_f \varepsilon \frac{\partial T_f}{\partial \tau} = -\frac{(mC_p)_f}{A} \frac{\partial T_f}{\partial y} + h_v (T_b - T_f)$$

$$(\rho C_p)_b (1-\varepsilon) \frac{\partial T_b}{\partial \tau} = h_v (T_f - T_b)$$

Model Results

Screening Potential Filler Materials in Nitrate Salt

- Seventeen commonly mined minerals and crushed rock were evaluated for their compatibility with nitrate salts
- The ideal filler material would have the following properties:
 - Inexpensive
 - Widely available
 - Low void fraction
 - Compatible with nitrate salts
 - Have a high heat capacitance

Chemical Name	Mineral Name	Chemical Formula
Aluminum oxide	Corundum	Al ₂ O ₃
Aluminum oxyhydroxide	Bauxite*	AlO _x (OH) _z
Barium carbonate	Witherite	BaCO ₃
Barium sulfate	Barite	BaSO ₄
Calcium carbonate	Marble	CaCO₃
Calcium fluoride	Fluorite	CaF ₂
Calcium sulfate	Anhydrite	CaSO ₄
Iron (II,III) oxides	Taconite	Fe ₂ O ₃ ,Fe ₃ O ₄
Iron titanate	Ilmenite	FeTiO ₃
Magnesium carbonate	Magnesite	MgCO ₃
Silicon carbide	Carborundum	SiC
Tin oxide	Cassiterite	SnO ₂
Calcium hydroxyphosphate	Hydroxylapatite	Ca ₅ (PO4) ₃ OH
Calcium flurophosphate	Fluorapatite	Ca5(PO4)3F
Calcium carbonate	Limestone	CaCO₃•H ₂ O
Silicon dioxide	Quartzite	SiO ₂

Isothermal Tests of Filler Materials

- Evaluated candidate materials in nitrate salts at 400 C.
 Samples were removed at 10, 100, 400 and 1000 hours of exposure.
- Samples were washed, weighed, and photographed.
 The salt was analyzed for contaminants.
- Results indicated the most promising materials were: quartzite, taconite, marble, NM limestone, apatite, corrundum, scheelite, and cassiterite.

Thermal Cycling Tests

- Evaluated how well materials held up to thermal cycling condition expected in a thermocline system. At least 350 cycles between 290 and 400 deg C were conducted on each sample.
- Samples tested: taconite, marble, NM limestone, quartzite, and silica sand.
- Results:
 - NM Limestone fell apart
 - Marble softened and individual grains appeared to enlarge
 - Taconite pellets held together well.
 Absorbed some salt in pores
 - Quartzite rock and silica sand held up remarkable well and were selected as filler material for pilot-scale test

Thermal Cycling System

Thermocline Test

- Evaluate on a larger (pilot-scale) a molten-salt thermocline concept.
- Fabricated a 6 m tall by 3 m diameter carbon steel tank.
 Filled tank with a 2:1 mixture of quartzite rock and silica sand to a level of 5.2 m.
- Sodium nitrate and potassium nitrate were melted and added to tank.
- A propane heater simulated the heat input from the solar field (via the salt-to-oil heat exchanger).
- A forced-air cooler simulated heat rejection to the steam generator (through the salt-to-oil exchanger).

Tests Conducted

- Verification of heat capacity of system
- Evaluation of size and shape of thermal gradient
- Evaluation of change of shape of gradient over time
- Measurement of heat loss over time

Pilot-Scale Thermocline System

Thermocline Test Results

- Capacity measured to be 2.44 MWh (slightly higher than 2.3 MWh design estimate.)
- Height of gradient during charging matches modeled profile.
- Gradient tended to become more tapered after 41 hours, but can still yield useful energy at a reasonable temperature potential.
- Heat loss was higher than modeled (likely due to heat loss through pump penetrations at the top (which weren't modeled.)

Profile during discharging and stagnant with heat loss

Economic Analysis for a 688 MWh_t **Two-tank and Thermocline Systems**

Component	Two-Tank Molten Salt	Thermocline with Quartzite
Nitrate Solar Salt, \$k	11800	3800
Filler Material, \$k	0	2200
Tank(s), \$k	3800	2400
Salt-to-oil Heat Exchanger, \$k	5500	5500
Total, \$k	21100	13900
Specific Cost, \$/kWh	31	20

Thermocline Molten-Salt System is 65% the cost of a Two-tank Molten-Salt System

Summary

- A molten salt thermocline system has been developed that is lower cost than a two-tank molten salt system.
- Isothermal and thermal cycling tests showed that silica sand and quartzite rock as well as taconite were compatible with nitrate salts.
- The feasibility of a molten-salt thermocline system was proven on a pilot scale 2.3 MWh storage system.